

Type designation	B1N360V-Q20L60-2LU3-H1151
Ident-No.	1534069

Measuring range	$0 \ldots .360^{\circ}$
Mounting conditions	Vertical
Repeatability	$\leq 0.2 \%$ of measuring range $\|\mathrm{A}-\mathrm{B}\|$
Linearity deviation	$\leq 0.6 \%$
Temperature drift	$\leq \pm 0.05 \% / \mathrm{K}$
Resolution	$\leq 0.14{ }^{\circ}$
Ambient temperature	$-30 \ldots+70^{\circ} \mathrm{C}$

Ambient temperature
10... 30 VDC

Operating voltage
solation test voltage
Short-circuit protection
Wire breakage/Reverse polarity protection
Output function
Voltage output

Load resistance voltage output
Response time

Current consumption

Design
Dimensions
Housing material
Electrical connection
Vibration resistance
Shock resistance
Protection class
MTTF
Packaging unit
$\leq 0.5 \mathrm{kV}$
yes
yes/ Complete
5-pin, Analog output
0.1...4.9V

2 outputs, one for CW and one for CCW
$\geq 40 \mathrm{k} \Omega$
0.1 s

Time for the output signal to reach 90% of the adjusted measuring range
50... 105 mA (voltage-dependent)

Rectangular,Q20L60
$60 \times 30 \times 20 \mathrm{~mm}$
Plastic, PC
Connector, M12 $\times 1$
55 Hz (1 mm)
30 g (11 ms)
IP68/IP69K
203 years acc. to SN 29500 (Ed. 99) $40^{\circ} \mathrm{C}$

- Rectangular, plastic, PC
- Compact housing
- Connection via M12 $\times 1$ male
- Response time 0.1 s
- 10... 30 VDC

■ Two counter-running 0.1 ... 4.9 V analog outputs improve machine safety through redundancy

Wiring Diagram

Functional principle

The TURCK inclinometers incorporate a micromechanical pendulum, operating on the principle of MEMS technology (Mikro Elektro Mechanic Systems).
The pendulum basically consists of two 'plate' electrodes arranged in parallel with a dielectric placed in the middle. When the sensor is inclined, the dielectric in the middle moves, causing the capacitance ratio between both electrodes to change.

The downstream electronics evaluates this change in capacitance and generates a corresponding output signal.

Inclinometer

B1N360V-Q20L60-2LU3-H1151

Industrial

 Automation

Adjusting the measuring range via TX1-Q20L60 teach adapter

Setting the angular range in CW direction:

- Move sensor to start position
- Press and hold Teach-Gnd until the output is set to 0.1 V (approx. 1 s)
- Move sensor to end position
- Press and hold Teach-Gnd until the output is set to 4.9 V (approx. 3 s)

Resetting the angular range:

- Press and hold Teach-Gnd until the output is set to 2.5 V (approx. 6 s)
- Angle measurement is set back to 360° degrees (in mounting position "connector outgoing topwards" the sensor provides an output signal in accordance with 0° degrees)

Accessories

Type code	Ident-No.	Description	
IM43-13-SR	7540041	Trip amplifier; 1-channel; input 0/4... 20 mA or $0 / 2 \ldots 10 \mathrm{~V}$; supply of 2- or 3-wire transmitters/sensors; limit value adjustment via teach button; three relay outputs with one NO contact each; removable terminal blocks; 27 mm wide; universal voltage supply 20... 250 VUC; further Limit value indicators are described in our "Interface Technology" catalog.	
SG-Q20L60	6901100	Protective frame for Q20L60; protects against mechanical impact; stainless steel	
TX1-Q20L60	6967114	Teach adapter for inductive encoders, linear position, angle, ultrasonic and capacitive sensors	

